Skip to contents

Analyzes topic evolution over time periods using dynamic modeling approaches to track concept emergence, evolution, and decline.

Usage

run_temporal_topics_internal(
  texts,
  metadata = NULL,
  n_topics = 10,
  temporal_unit = "year",
  temporal_window = 3,
  detect_evolution = TRUE,
  embedding_model = "all-MiniLM-L6-v2",
  seed = 123
)

Arguments

texts

Character vector of documents

metadata

Data frame containing temporal information

n_topics

Number of topics to discover

temporal_unit

Unit for temporal analysis ("year", "quarter", "month")

temporal_window

Size of temporal window for analysis

detect_evolution

Whether to detect topic evolution patterns

embedding_model

Transformer model for embeddings

seed

Random seed for reproducibility

Value

List containing temporal topic model and evolution analysis