This function generates descriptive labels for each topic based on their top terms using OpenAI's ChatCompletion API.
Usage
generate_topic_labels(
top_topic_terms,
model = "gpt-3.5-turbo",
system = NULL,
user = NULL,
temperature = 0.5,
openai_api_key = NULL,
verbose = TRUE
)
Arguments
- top_topic_terms
A data frame containing the top terms for each topic.
- model
A character string specifying which OpenAI model to use (default: "gpt-3.5-turbo").
- system
A character string containing the system prompt for the OpenAI API. If NULL, the function uses the default system prompt.
- user
A character string containing the user prompt for the OpenAI API. If NULL, the function uses the default user prompt.
- temperature
A numeric value controlling the randomness of the output (default: 0.5).
- openai_api_key
A character string containing the OpenAI API key. If NULL, the function attempts to load the key from the OPENAI_API_KEY environment variable or the .env file in the working directory.
- verbose
Logical, if TRUE, prints progress messages.
Examples
if (interactive()) {
df <- TextAnalysisR::SpecialEduTech
united_tbl <- TextAnalysisR::unite_text_cols(df, listed_vars = c("title", "keyword", "abstract"))
tokens <- TextAnalysisR::preprocess_texts(united_tbl, text_field = "united_texts")
dfm_object <- quanteda::dfm(tokens)
out <- quanteda::convert(dfm_object, to = "stm")
stm_15 <- stm::stm(
data = out$meta,
documents = out$documents,
vocab = out$vocab,
max.em.its = 75,
init.type = "Spectral",
K = 15,
prevalence = ~ reference_type + s(year),
verbose = TRUE)
top_topic_terms <- TextAnalysisR::select_top_topic_terms(
stm_model = stm_15,
top_term_n = 10,
verbose = TRUE
)
top_labeled_topic_terms <- TextAnalysisR::generate_topic_labels(
top_topic_terms,
model = "gpt-3.5-turbo",
temperature = 0.5,
openai_api_key = "your_openai_api_key",
verbose = TRUE)
print(top_labeled_topic_terms)
# You can also load the Open AI API key from the .env file in the working directory as follows:
# OPENAI_API_KEY=your_openai_api_key
top_labeled_topic_terms <- TextAnalysisR::generate_topic_labels(
top_topic_terms,
model = "gpt-3.5-turbo",
temperature = 0.5,
verbose = TRUE)
print(top_labeled_topic_terms)
}