Preprocesses text data by:
Constructing a corpus
Tokenizing text into words
Converting to lowercase
Specifying a minimum token length.
Typically used before constructing a dfm and fitting an STM model.
Usage
preprocess_texts(
united_tbl,
text_field = "united_texts",
min_char = 2,
remove_punct = TRUE,
remove_symbols = TRUE,
remove_numbers = TRUE,
remove_url = TRUE,
remove_separators = TRUE,
split_hyphens = TRUE,
split_tags = TRUE,
include_docvars = TRUE,
keep_acronyms = FALSE,
padding = FALSE,
verbose = FALSE,
...
)
Arguments
- united_tbl
A data frame that contains text data.
- text_field
The name of the column that contains the text data.
- min_char
The minimum number of characters for a token to be included (default: 2).
- remove_punct
Logical; remove punctuation from the text (default: TRUE).
- remove_symbols
Logical; remove symbols from the text (default: TRUE).
- remove_numbers
Logical; remove numbers from the text (default: TRUE).
- remove_url
Logical; remove URLs from the text (default: TRUE).
- remove_separators
Logical; remove separators from the text (default: TRUE).
- split_hyphens
Logical; split hyphenated words into separate tokens (default: TRUE).
Logical; split tags into separate tokens (default: TRUE).
- include_docvars
Logical; include document variables in the tokens object (default: TRUE).
- keep_acronyms
Logical; keep acronyms in the text (default: FALSE).
- padding
Logical; add padding to the tokens object (default: FALSE).
- verbose
Logical; print verbose output (default: FALSE).
- ...
Additional arguments passed to
quanteda::tokens
.
Examples
if (interactive()) {
df <- TextAnalysisR::SpecialEduTech
united_tbl <- TextAnalysisR::unite_text_cols(df, listed_vars = c("title", "keyword", "abstract"))
tokens <- TextAnalysisR::preprocess_texts(united_tbl,
text_field = "united_texts",
min_char = 2,
remove_punct = TRUE,
remove_symbols = TRUE,
remove_numbers = TRUE,
remove_url = TRUE,
remove_separators = TRUE,
split_hyphens = TRUE,
split_tags = TRUE,
include_docvars = TRUE,
keep_acronyms = FALSE,
padding = FALSE,
verbose = FALSE)
print(tokens)
}