Implements contrastive learning approaches for topic modeling to improve topic separation and discriminability.
Usage
run_contrastive_topics_internal(
texts,
n_topics = 10,
temperature = 0.1,
negative_sampling_rate = 5,
embedding_model = "all-MiniLM-L6-v2",
seed = 123
)See also
Other topic-modeling:
analyze_semantic_evolution(),
assess_hybrid_stability(),
calculate_assignment_consistency(),
calculate_eval_metrics_internal(),
calculate_keyword_stability(),
calculate_semantic_drift(),
calculate_topic_probability(),
calculate_topic_stability(),
find_optimal_k(),
find_topic_matches(),
fit_embedding_topics(),
fit_hybrid_model(),
fit_temporal_model(),
generate_topic_labels(),
get_topic_prevalence(),
get_topic_terms(),
get_topic_texts(),
identify_topic_trends(),
plot_model_comparison(),
plot_quality_metrics(),
run_neural_topics_internal(),
run_temporal_topics_internal(),
validate_semantic_coherence()
