Extracts topic prevalence values (gamma/theta) from a fitted STM model, returning mean prevalence for each topic as a data frame.
Value
A data frame with columns:
- topic
Topic number
- gamma
Mean topic prevalence across documents
- category
Category label (if provided)
See also
Other topic-modeling:
analyze_semantic_evolution(),
assess_hybrid_stability(),
calculate_assignment_consistency(),
calculate_eval_metrics_internal(),
calculate_keyword_stability(),
calculate_semantic_drift(),
calculate_topic_probability(),
calculate_topic_stability(),
find_optimal_k(),
find_topic_matches(),
fit_embedding_topics(),
fit_hybrid_model(),
fit_temporal_model(),
generate_topic_labels(),
get_topic_terms(),
get_topic_texts(),
identify_topic_trends(),
plot_model_comparison(),
plot_quality_metrics(),
run_contrastive_topics_internal(),
run_neural_topics_internal(),
run_temporal_topics_internal(),
validate_semantic_coherence()
Examples
if (FALSE) { # \dontrun{
# Fit STM model
topic_model <- stm::stm(documents, vocab, K = 10)
# Get topic prevalence
prevalence <- get_topic_prevalence(topic_model)
# With category label
prevalence_sld <- get_topic_prevalence(topic_model, category = "SLD")
} # }
