Analyzes how topics evolve over time by fitting topic models to different time periods and tracking semantic changes.
Usage
fit_temporal_model(
texts,
dates,
time_windows = "yearly",
embeddings = NULL,
verbose = TRUE
)Arguments
- texts
A character vector of text documents to analyze.
- dates
A vector of dates corresponding to each document (will be converted to Date).
- time_windows
Time grouping strategy: "yearly", "monthly", or "quarterly" (default: "yearly").
- embeddings
Optional pre-computed embeddings matrix. If NULL, embeddings will be generated.
- verbose
Logical indicating whether to print progress messages (default: TRUE).
See also
Other topic-modeling:
analyze_semantic_evolution(),
assess_embedding_stability(),
assess_hybrid_stability(),
auto_tune_embedding_topics(),
calculate_assignment_consistency(),
calculate_eval_metrics_internal(),
calculate_keyword_stability(),
calculate_semantic_drift(),
calculate_topic_probability(),
calculate_topic_stability(),
find_optimal_k(),
find_topic_matches(),
fit_embedding_model(),
fit_hybrid_model(),
generate_topic_labels(),
get_topic_prevalence(),
get_topic_terms(),
get_topic_texts(),
identify_topic_trends(),
plot_model_comparison(),
plot_quality_metrics(),
run_contrastive_topics_internal(),
run_neural_topics_internal(),
run_temporal_topics_internal(),
validate_semantic_coherence()
