
Analyze Sentiment Using Tidytext Lexicons
Source:R/sentiment_analysis.R
sentiment_lexicon_analysis.RdPerforms lexicon-based sentiment analysis on a DFM object using tidytext lexicons. Supports AFINN, Bing, and NRC lexicons with comprehensive scoring and emotion analysis. Now supports n-grams for improved negation and intensifier handling.
Usage
sentiment_lexicon_analysis(
dfm_object,
lexicon = "afinn",
texts_df = NULL,
feature_type = "words",
ngram_range = 2,
texts = NULL
)Arguments
- dfm_object
A quanteda DFM object (unigram or n-gram)
- lexicon
Lexicon to use: "afinn", "bing", or "nrc" (default: "afinn")
- texts_df
Optional data frame with original texts and metadata (default: NULL)
- feature_type
Feature space: "words" (unigrams) or "ngrams" (default: "words")
- ngram_range
N-gram size when feature_type = "ngrams" (default: 2 for bigrams)
- texts
Optional character vector of texts for n-gram creation (default: NULL)
Value
A list containing:
- document_sentiment
Data frame with sentiment scores per document
- emotion_scores
Data frame with emotion scores (NRC only)
- summary_stats
List of summary statistics
- feature_type
Feature type used for analysis
Examples
if (FALSE) { # \dontrun{
corp <- quanteda::corpus(c("I love this!", "I hate that", "It's okay"))
dfm_obj <- quanteda::dfm(quanteda::tokens(corp))
results <- sentiment_lexicon_analysis(dfm_obj, lexicon = "afinn")
print(results$document_sentiment)
texts <- c("not good at all", "very happy indeed")
results_ngram <- sentiment_lexicon_analysis(
dfm_obj,
lexicon = "bing",
feature_type = "ngrams",
ngram_range = 2,
texts = texts
)
} # }