
Analyze and Visualize Word Correlation Networks
Source:R/text_mining_functions.R
word_correlation_network.Rd
This function creates a word correlation network based on a document-feature matrix (dfm).
Usage
word_correlation_network(
dfm_object,
doc_var = NULL,
common_term_n = 130,
corr_n = 0.4,
top_node_n = 40,
nrows = 1,
height = 1000,
width = 900
)
Arguments
- dfm_object
A quanteda document-feature matrix (dfm).
- doc_var
A document-level metadata variable (default: NULL).
- common_term_n
Minimum number of common terms for filtering terms (default: 30).
- corr_n
Minimum correlation value for filtering terms (default: 0.4).
- top_node_n
Number of top nodes to display (default: 40).
- nrows
Number of rows to display in the table (default: 1).
- height
The height of the resulting Plotly plot, in pixels (default: 1000).
- width
The width of the resulting Plotly plot, in pixels (default: 900).
Value
A list containing the Plotly plot, a data frame of the network layout, and the igraph graph object.
Examples
if (interactive()) {
df <- TextAnalysisR::SpecialEduTech
united_tbl <- TextAnalysisR::unite_text_cols(df, listed_vars = c("title", "keyword", "abstract"))
tokens <- TextAnalysisR::preprocess_texts(united_tbl, text_field = "united_texts")
dfm_object <- quanteda::dfm(tokens)
word_correlation_network_results <- TextAnalysisR::word_correlation_network(
dfm_object,
doc_var = "reference_type",
common_term_n = 30,
corr_n = 0.4,
top_node_n = 40,
nrows = 1,
height = 1000,
width = 900)
print(word_correlation_network_results$plot)
print(word_correlation_network_results$table)
print(word_correlation_network_results$summary)
}