
Validate User-Selected Topic Labels
Source:R/langgraph_workflows.R
validate_topic_labels_langgraph.RdUses LangGraph workflow to validate user-selected topic labels using LLM.
Usage
validate_topic_labels_langgraph(
user_labels,
topic_terms,
ollama_model = "llama3",
ollama_base_url = "http://localhost:11434",
envname = "textanalysisr-env"
)Arguments
- user_labels
Character vector of user-selected labels for each topic
- topic_terms
List of character vectors with top terms for each topic
- ollama_model
Character string, Ollama model name (default: "llama3")
- ollama_base_url
Character string, Ollama API URL (default: "http://localhost:11434")
- envname
Character string, Python virtual environment name (default: "langgraph-env")
Value
List with:
success: Logical, TRUE if validation completed
validation_metrics: List with coherence and distinctiveness scores
error: Error message (if failed)
Details
Validation metrics include:
coherence_scores: How well labels match term distributions (0-10 scale)
distinctiveness_scores: How unique/specific labels are (0-10 scale)
overall_quality: Average of coherence and distinctiveness
Examples
if (FALSE) { # \dontrun{
user_labels <- c("Education Policy", "Healthcare Services", "Climate Action")
topic_terms <- list(
c("education", "student", "learning"),
c("health", "medical", "patient"),
c("environment", "climate", "carbon")
)
validation <- validate_topic_labels_langgraph(
user_labels = user_labels,
topic_terms = topic_terms
)
print(validation$validation_metrics$overall_quality)
} # }