Visualize the correlation relationships between terms in the corpus based on pairwise correlations.
Usage
plot_word_correlation_network(
dfm_object,
co_occur_n = 30,
corr_n = 0.4,
height = 900,
width = 800
)
Arguments
- dfm_object
A quanteda document-feature matrix (dfm).
- co_occur_n
Minimum number of co-occurrences for filtering terms (default is 30).
- corr_n
Minimum correlation value for filtering terms (default is 0.4).
- height
The height of the resulting Plotly plot, in pixels. Defaults to
900
.- width
The width of the resulting Plotly plot, in pixels. Defaults to
800
.
Examples
if (interactive()) {
df <- TextAnalysisR::SpecialEduTech
united_tbl <- TextAnalysisR::unite_text_cols(df, listed_vars = c("title", "keyword", "abstract"))
tokens <- TextAnalysisR::preprocess_texts(united_tbl, text_field = "united_texts")
dfm_object <- quanteda::dfm(tokens)
TextAnalysisR::plot_word_correlation_network(
dfm_object,
co_occur_n = 30,
corr_n = 0.4,
height = 900,
width = 800)
}